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I. rNTRODUCTION

Let X be a compact subset of the real line IR, C(X) the real algebra of
continuous mappings of X into IR, and II ilx the sup norm on C(X). We shall
discuss the characterisation, existence and uniqueness of best approximations
to elements of C(X) by linear combinations of functions which form a
Chebyshev system. (In most of our work, X will be either an interval or a
finite set; but we shall not make any restriction on the compact set X until
Section 2, below.)

The classical treatment of these problems is well known and extensively
documented (cf. [6-10]). What is distinctive about our discussion is that we
work entirely within the framework of constructive mathematics (as
developed in [I, 2]). We do so for reasons that we have stated elsewhere
[2, 3], and shall not repeat at length here; suffice it to say that a constructive
analysis of the sort we shall carry out provides numerical estimates which
cannot be obtained by the "existential" techniques of classical mathematics.
(Incidentally, this remark is not intended to denigrate classical mathematics:
at all stages of our investigation, the classical theory played an indispensable
role of guidance and motivation.)

Let n be a positive integer and ~l , ... , ~n elements of C(X). \Ve say that
{~l ,... , ~n} is a Chebyshev system (over X) if the following condition of Haar
is satisfied:

if K] .... , K" are painvise disjoint compact subsets of X, then

inf{l det[¢;(xJJI: V i(Xi E' K i )} > O.

(Note that, for constructive purposes, J( , K j are di.\joint if inf{! Xi - Xj [:

Xi E' K, ' Xj E KJ > 0.)
For example, {I, X, ... , x n - 1} is a Chebyshev system over any compact

interval in IR; and {I, cos x, sin x, cos 2x, sin 2x, ... , cos nx, sin nx} is a
Chebyshev system over any compact subinterval of [0, 27T).
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Note that. if {<PI'"'' CPn] is a Chebyshev system over )" .V) ..... 'V iI arc
distinct points of X and tl tn are real numbers, then there exists a unique

linear combination ,/J of <PI' CPn such that VJ(x,.) ~" for k L .... II. It
follows from this that the functions CPI .... , <Pn are linearly independent.

The reader will have observed that our constructive Haar condition IS

more complicated than its classical counterpart (to which it is equivalent
classically). The reason for this is that there is no known constructive 1'1'001'

that a continuous mapping of a compact mctric space into the POsilivc reai
line has a positive lower bound. This state of affairs has a considerable
elTect on some of our later work. Indeed, while we do not expect that the
classical theorem in question will prove to be essentially nonconstructive
[2. Chap. L Section 5]. the complicated analysis required to show that It
obtains in special cases of interest leads us to believe that a construct iye proal'
or the theorem is unlikely to be found.

To reinrorce these remarks, we end this section of our paper with a proposi
tion of great importance for our subsequent analysis.

1.1. PROPOSITION. Let n 2, 8 0, and suppose that there exist n !Joints
tl ,... , t II of X with min 1<i<j<n I ti .- tj I 8. A necessary and sufficient
condition that the elements CP1 ,... , <Pn of C(X) form a Chebyshev system is
that: for each, in (0, 8], there exists /3 0 such that det[<pj(x;)]1 /'3
Irhenever Xl ..... x n belong to X and minliJc n Xi Xi \'.

Proof Suppose that CPl ,... , <Pn form a Chebyshev system. and let 0
8. Let gJ .... , ~v} be an (~/8-net of X, and construct sets A, B so that

Au B {I, .... v}2,

(j, k) E A i ~j- ~" I exj2,

(j, k) E B i ~) -- ~Ic < 3ex!4.

Let

S == {i E {I,.... v}": 'tIj < k ((i(J), i(k» E A)}.

Let Xl' .... x n be points of X such that min1,:;i<j<n i Xi- Xj i ex, and
choose i in {I, ... , v}n so that i Xj - ~i(j)! < ex/8 for j = I, ... , n. Then for
j < k we have

> 3cxj4;

so that (i(J), i(k» ¢:. B, and therefore (i(j), i(k» E A. Thus i E S, and S is
nonempty. For each s in S, choose (3(.1') 0 so that I det[<pltlc)]l (3(s)
whenever It", - LUdl :S; ex/8 for k == 1...., n. (To do this, fIrst choose I' in
(ex/8, ,,/4) so that the closed ball B( C(j) , 1') of centre (,U) and radius I' is
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compact for each j. As Lu)- Ssudl > al2 for j cF k, the balls B('s(j) , r)

are pairwise disjoint, and the Haar condition can be applied to them to
produce the number j3(s).) With 13 = min{j3(s): s E S}, we now have
i det[Tk\"/c)]i ~ j3(i) ~ 13. This completes the proof of necessity of the condi
tion stated in our proposition; the proof of sufficiency is routine, and will be
omitted. I

By evaluating the appropriate Vandermonde determinant, it is easy to show
that, for the Chebyshev system {I, X, ... , x n - 1

} over a compact interval, we
can take 13 0:11 (11-1)/2 in the above proposition.

2. BASIC PROPERTIES OF CHEBYSHEV SYSTEMS OVER [0, 1]

For the rest of this paper, n will be a fixed positive integer, {T1 ,... , Tn}
a Chebyshev system over X, H the n-dimensional real linear subspace of
C(X) spanned by {T1 ,... , Tn}, and a an element of C(X). We want to compute
and characterise a best (Chebyshev) approximant of a in H: that is, an element
b of H such that

I! a ~ b Ilx == dist(a, H) == inf{j a - 1f; Ilx: 1f; E H}.

Note that dist(a, H) is computable, by [3, 2.1].
It will be helpful to introduce some notational shorthand at this point.

G · ( ). flllm 't II f (",m 2)112 W 1 'tlven a -= a1 , ... , am III Lm , we Wfl e a i 2 or Lj~l aj '. e a so Wfl e

and

¢(X) = (Tl(X),,,,, Tn(X)) (XE X)

II ¢ II =e. sup{11 ¢(x)112: x E X}

(the latter being computable, by [2, Chap. 2, 4.4]). If n ~ 2 and a, 13 are
as in 1.1, we write j3(a) for 13; if n= 1 and a > 0, we write fi(a) for
inf{1 T1(X)]: x E X}; in either case, we then define

n

yea) = min(11 ¢ Ii, j3(a)!n1i2(n - I)! IT (1 .:- Ii Ti Ilx)).
i~1

(The notations j3(a), y(a) represent convenient, but dispensable, applications
of the Axiom of Choice.)

By far the most interesting Chebyshev approximation problems occur
when X is a compact interval in IR (cf. [3, Sections 4-6]). To deal with this
case, we shall assume from here until Section 5, below, that X =. [0, 1],
and we shall write 11 Ii for II 11[0.1]' Note that, if (Xl , ... , Xn~l) is a strictly in-
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creasing sequence of n + 1 points of [0, 1] and A} ,... , An.;-I are real numbers
with L~:}} I Ai I = 1, then (by the Cauchy-Schwarz inequality in [Rn)

11. 1 1

a 2 I I Ai I If>(x;)! 2

I,"!

1/-.-1

<~i, a ;2 I I Ai Ii If> ':
i,·J

Our first task, carried out in parts 2. I-2.4, is to obtain some basic numerical
and interpolatory properties of our Chebyshev system.

2.1. LEMMA. Let K1 , ... , K n be pairwise disjoint compact subsets of [0, 1],
8 = inf{[ det[c!>lXI)] [: Vi(Xi E K;)}, and if; L7.~1 GJepj . Then

. max inCI if;(x)i: x E Ki \
/=l,·· .. 1l

Proof With

";' b: a: 2'/1') 2(/1 - l)! n (1;
T-'c 1

"
f1- = bjn3 !2(11 .. - I)l n (II ep, ,).

r",.,}

Al = . max innl if;(x): x t' Ki :.
[,,-'1····,11

suppose that M < fLl: a !b. For each i E {I ..... II], choose Xi in J(I so that
i if;(x,) I < fLi[ a .12' Let ([>IS be the cofactor of epJx,) in the II-by-n matrix
[cp;(x;)], Ll= det[cplx;)], and note that

n

I ([>ij! ~ (n - I)! IT
r=l,T~.i

Using Cramer's rule, we obtain

11

CPr I «n-I)! IT (I
,'=1

n

I) I I I tf;(Xi): ! ([>i/ i
i=l

1t n

< b- t I I.L a 1!2 (n ~ I)! n (l CPr)
i-d r~-.l
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This leads to the contradiction
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)

1/2
2IIa 112 /n = a !'2 .

Thus, in fact, M ~ ILII a 112' I

2.2. Remark. In the notation of Lemma 2.], suppose that n ~ 2 and
that, for each i E {2,... , n}, there exists Xi in Ki with lj;(Xi) = O. Then, for
each Xl In Kl and each j in {I, ... , n} we have aj = iJ-llj;(Xl) lj;lj; whence

n

a !I~ ~ iJ-2lj;(X1)2 L <Pij
j~l

n

~ 8-2lj;(XI )2 n(n - I)! n (I + 4>,1 1))2.
T-=1

This gives

n

inf{lljJ(x)l: x E Xl} ~ 8:1 a 1 12In1/2(n - I)! n (1 + 1>,. II),
roo 1

a strengthening of the estimate in Lemma 2.1.
For each of the next three results, the reader is invited to provide himself

with the modifications of their classical proofs which will yield constructive
ones.

2.3. LEMMA. Let n ~ 2, ljJ E H, IlljJ Ii 0, and suppose that ljJ has zeroes
at n -- 1 distinct points of [0, I]. Then ljJ(x) changes sign at each zero of if/ in
(0, I).

2.4. LEMMA. Let n ~ 3, and let Xl"'" X n - 2 be n - 2 distinct points of
(0, I). Then there exists lj; in H such that

(a) for each i in {], ... , n - 2}, if/ex;) = 0 and ljJ(x) changes sign at X; :

(b) for eaclz compact KC [0, I] which is disjointfrom {x,: i = 1, ... , n -- 2}.
inf{1 1'(x)l: x E K} > O.

2.5. CARATHEODORY'S LEMMA. Let m, jJ be positive integers with m jJ + ],
A C I!{V and x a convex linear combination of m elements of A. Then, for each
E 0, there exists a convex linear combination y ofm - ] elements of A such
that x - Y II < E [6, p. 17].



104 DOUGLAS S. BRIDGES

We next remark that, cp: [0, I] -~ IR" being uniformly continuous.
{cp(x): x E [0, I]} is totally bounded, as its convex hull. In particular, this
ensures that

dist(O, co{cp(x): x E [0. 11:)
innl! C; • C; E col cp(X): x E [0, III:

is computable. In order to construct a nonvanishing element of H, we show
that this distance is positive.

2.6. LEMMA. dist(O, col cp(x): x E [0, 1m o.

Proof The proof is in several stages.

2.6.1. Let 0 eX < Ir l
, and let Xl 0·· •• X /I I be poillts oj [0, I] such that

min"~l, .... ,,{xl:~l -- Xl..} ~_. ,Y. Let PI ,... , Pill be nonnegative numbers with
'L;:~ll P, cc- 1. Then I!, 'L;:+ll PiCP(X')ib n1y(cx).

Let r E {I, ... , n}, and construct ~j 2~:' I (ljePj in H so that

if i r.

if i E {I, ... , n 1 I j. i r and r i I.

Applying 2.2 to the disjoint compact sets [X" X'+1], {x;j (iE{I, .... nil,
i--/-cr,i r;-I),wehave

inf{Ilj;(x)l: x E [x." xhil} y(cx):1 a i'2 O.

As q;(xr ) > 0, [2, Chap. 2, 3.3] ensures that lj;(X'cl) y(lY) !' a!12 ; whence

/I 11

L PiVJ(X,j
i_·cl

n n+l

L aj I P,ePj(X')
jccoJ i--,-d

, n+l "

a il211 i~ PICP(X;) II~ .

Thus

(j I, ... , n)
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and so
n,,-]

o < y(O:) = I PiY(O:)
i-I

Cf 2pi ~. (PI + PH)) y(n:)
,/,,,,,1

"I (Pi + P, 'I) y(O:)
1-=-1

n-i-] _ \

n i~ Pi¢(X;) 11
2

.

Division by 11 completes the proof of 2.6.1.

2.6.2.

105

inf{iI ¢(X),12: x E [0, I]) :-'> O.

Given x in [0, I], compute Xl'"'' x nrl in [0, I] and r in {I, ... , n -+ I} so that
X, x and mink~1,....n(X11~1 - x k) I i4n. Then, with PI' I, Pi 0 for

r, part 2.6.1 entails

II
no I I'

i ¢(X)I!2 == I p,¢(xt>.1
i _cl ; 2

II l y(I!4n) O.

2.6.3. For each m in {I, ... , n -+ I}, there exists (',,, > 0 such that:

I;:l p,¢(x,),12 Cm whenever PI ,... , Pill are nonnegative numbers, I;:ol Pi =
I and Xl ..... XI/I are distinct points of [0, I].

The case m I is just case 2.6.2. Let k E {I, ... , n}, suppose we have proved
2.6.3 for 171 k, and consider the case 171 == k + I. Let 0 be a modulus of
uniform continuity for the mapping F: (p, x) -+ I~:ll Pi¢(XJ!2 on the
compact subset

lp E IRn 1l : 'f Pi
i,=1

I, Vi(Pi ;;: 0)( X [0, I ]n l I

of IR" 1< IRn ,t, where the latter is taken with norm

Ij(p, x)1J == maXi~l ..... n+-lmax(1 Pi 1, I Xi .).

Let
LX = min(2-loG c,.), 1/2n(n + I»,

cm = min(l c" , n-ly(n:».

L b . b . h "k+1 I 0 -et PI' .... Pk+1 e nonnegative num ers Wit ':"id Pi =, ~, Xl <
X 2 < ... < X k+l .-(; I and fJ. = mini~I ..... k(Xi+l - Xi)' We have either
,:\C < fJ. or fJ. < 2n:. In the former case, if k < n we set Pi = 0 for i = k + 2, ... ,
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n I, and choose X k + 2 , ... , xn+l in [0, I] so that minl~,i<j<n+l i Xi - X J I,·
This latter choice is possible as

maX(Xl , maxi~l. .... k(Xi+l ~- Xi), 1 .- xk+tl
l/(k T 2) .? I/(n + I) > nex.

By part 2.6.1, we have

k+] , n+l

II I PiCP(Xi) 11,= II I Pit!J(Xi) II
Z-_c} 2. l=l 2

n~ Iy( CI:)

In the case fL < 2ex, choosing r in {I, ... , k} with Xr.r! .- X r < 2e1:, we define

~i c= Xi

P; Pi
"Pr Pr+1

if iEll, ... , k i 11, i ct~ r I I,
if r j I,

if i E: I ,... , k n, i =I rand i,!= r ',' I,
if i c.~c r.

If k < n, we also set Pi 0, ~i Xi
each P; is nonnegative,

A.l

I Pi

I for i ~= k + 2,... , n

n:l

I Pi = 1

I. Then

and

n+-l

i=l

/;+1

I
i,-=-l.i*r,i*rtl

/;+]

I p;t!J(x,).
i,,-,I,ifT+l

As also

we now have

II 'I

I Pit!J(Xi)
t-,,-l

Ii n i 1

.? ll,~ Pit!J(~i) 11
2

- ~CI

/; .. ]

. I P;t!J(Xi) II, --~('I
'1--l,z-*r-ll '"'

-~Ck

This completes the proof of part 2.6.3.
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With CUd as in part 2.6.3, we now suppose that

dist(O, co{¢(x): x E' [0, I]}) < en+!

107

and compute nonnegative numbers PI ,... , Pili' and points Xl, .. ·, x m of
[0, 1], such that L;:l Pi = I and Ii L;':l Pi¢(x,)iI2 < en 1 . Repeated applica
tion of Lemma 2.5, if necessary, allows us to take m ..s:; n -;- I; from which it
easily follows that we can assume that m =" n I. As the mapping F
(introduced in the proofof part 2.6.3) is uniformly continuous over its domain,

we can find nonnegative numbers p~ , ... , P;'-c1and distinct points x~ ,... , X;,; 1

of [0, I] such that L~:ll P; = I and II L~~l p;¢(x;)li 2 < ('TIL' This contradicts
2.6.3; whence, in fact,

dist(O, co{¢(x): X EO 10, I]}) 0. I

2.7. PROPOSITION. There exists Vi in H with inf{tf(x): x EO [0, I]] °
Proof Choosing e with °< c < dist(O, co{¢(x): x E [0, I]}), we apply

the Separation Theorem [2, Chap. 3, 3.3] to the subsets {OJ, co{¢(x): x E [0, 1n
of 1R1", to construct a normable linear functional u on IR1n such that u(~) k
for each ~ in co{¢(x): x E [0, In. As u is normable, there exists a in IRn such
that u(x) L;'l ajXj for each x in IRn. With tf = 2::7:.1 aAJj E H, we now have

tf(x) = u(¢(x)) ;:, ~e °
whence inf{tf(x): x EO [0, I]} > 0. I

(x E [0, I j),

3. CHARACTERISATION OF BEST CHEBYSHEV ApPROXIMANTS

Our next task is to extract the constructive essence from Borel's classical
characterisation of best Chebyshev approximants [10, Theorem 3--1]. 1n
order to accomplish this, we require some more definitions and lemmas.

The first of these definitions introduces a constructive substitute for the
classical notion of "altemant." Let p E Hand E > 0. By an E-alternant of a
and p we mean an ordered pair comprising an integerj E {O, I} and a strictly
increasing sequence (Xl"'" Xn+l) of nil points of [0, I] such that

(-IYj(a - p)(x,J > II a- p 11-- E (k I, ... , n I).

If also 0 E < Ii a - p II and m EO {O, ... , n - I}, we define an (n!, E)-prealter
nan! of a and p to be an ordered pair comprising an integer j EO {O, I} and a
strictly increasing sequence (Xl , ... , X211t~4) of 2m-l· 4 points of [0, I] such that
Xl 0, x~,,,. I = I,

(- I)i(a - p)(x~) Ia - p - E.

(_I)mI1- j (a-p)(x2111 :1) Ila-p -E.
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(~IV i(a- p)(X r )

and

sup{l(a ~ p)(x) : Xu

a - pI,

.r

c (r 2k

a pi

1,2k

(k

2; k

I, .... III

I, ... , Ill)

I).

3.1. LEMMA. Let p E H, and suppose that °< E < a p 7111'11 either
I a - p dist(a, H) or there exists a (0, E)-prealternallt ol a and p.

Proof Let 111, /'vi be respectively the inf, sup of a p over [0, I]. Either
I a-- p min(m, M) or min( 111, /'vi) a pli E. In the former
case, we choose \ so that

°<; ~ < 2~la p min(-m, M))

and ,Il E H with ° inf{ ~J(x): x c= [0, 1]) and I, ~j

a- p --/17 (when 'I a pM), we set q
and, for each x in [0, 1],

(Proposition 2.7). If
P\~J: so that q c H

(a q)(x)

(q -- alex)

a --.- p I. -\ inf ~J,

x. <f(x) sup{( p- a)W: ~ c [0, I]]

,\ /17

Hence

a - p

a - p

a p,

a-- q dist(a, H).

We obtain the same inequality in the easel a p /vI by taking q

p ~ lX.~l.

On the other hand, if min( -m, M) a ~ PIE, we argue as in the
corresponding part of the proof of [3, 4.\], to show that there exists a
(0, E)-prealternant of a and p. I

3.2 LEMMA. Let m be all integer, ° III 11 2, alld pc H. S'upposc
that °< E < II a ~ pi, and that there exists an (111, E)-prealternant ola and p.
Then either I, a - p dist(a, H) or there exists an (m I, E)-prealternant
ofa and p.

Proof Let (j, (t1 , ... , t2m+1 )) be an (m, E)-prealtemant of a and p, and
define

fLC.~ max/.~1 ..... m+2 sup{(-l)/,-j(a - p)(x): t2k - 1 f:!k; .
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Either II a ~ p II fL or fL
so that

Ia- p -- E. In the fonner case, choosey °
max(fL, maxk~], ....",.] sup{!(a- p)(x): 121,

< ! a - p 1- 2x,

let

and define

(k I .... , 111 I)

r 11 -- I

=~11-2

if 11 - 111 IS even,

if 11 - 111 is odd.

If m i 2 < r, also choose a strictly lI1creasing sequence (Z",c2 ,... , Z,.) of
r - 111- I points of (z] ,f:J Construct II; in H so that (-I)ilj!(t2) > 0,°< ~;I < minCeY, a - p !/2), lj! has its zeroes, and changes sign, at each
of ZI •... , Zr ' and

o u 2 I inf) I!;(X);: x E ':02

[121 - I , 121]~'

(This construction is possible in view of 2.2, 2.3 and 2.4.) Let q = p - ~),

suppose that a - q II I a- pi -- (J, and choose , in [0, I] so that
i(a - q)m l a - pi - u. Then

!(a -- p)ml :? I(a - q)ml -( p -- q)ml
!I a - pi - u - 1 I!;
la - p II - 21 ~;

max!.], .... "'+1 sup{(a - p)(x)l: 121,

It follows from this and the uniform continuity of a - p on [0, I] that there
exists i in {I, ... , 111 + 2} with 1211 , 121 .

Noting that the zeroes of lj! occur precisely at the points Zl , ... , 2, , and that
each interval [12k , 12k+d contains an odd number of these zeroes, we have

Hence

(_I)k-H1lj!(X) > ° k== I, ... , 111 .-1.. 2).

(- I )i-i(q - a)W = (-l)i-i~;m + (-I)'-j( p - a)W

<-u+la-p
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It follows from this and our choice of , that (~ I)' i(a- q)(O II a - p - a;
whence

(~I)H(a-- p)(O = (~I)H(a-- q)(O (-I)'-if(O

a -- p

Ii a - p

/> p,.

This contradicts the definition of p,; so that

(J --- "

a~p a q a dist(a, H).

On the other hand, if p, > Ii a . - p- E, we can argue as in the correspond-
ing part of the proof of [3, 4.2], to show that there exists an (m I, E)-

prealternant of a and p. I

Our next two results, taken together, form a constructive analogue of Borel's
characterisation theorem. We omit the proofs, as they differ in at most trivial
details from those of the corresponding theorems in the case of minimax
polynomial approximation [3, 4.3 and 4.4].

3.3 PROPOSITION. Let p E Hand 0 E a - p Then either a -- p
dist(a, H) or there exists an E-alternant of a and p.

3.4 THEOREM. A necessary and sujjicient condition that bE H be a best
Chebyshev approximant of a in H is that, for each E O. there exists an
E-alternant of a and h.

4. EXISTENCE A1'-:[) UNIQUENESS OF BEST CHEBYSHEV ApPROXIMAN IS

Each of the three remaining steps on the path to the construction of best
Chebyshev approximants is a stronger, and much more informative, version
of a classical counterpart (cf. [8, 3.5.1; 9. Theorem 24]).

4.1 LEMMA. Let 0 < x WI, and let Xl ' X"+1 be points of [0, I] with
min7"_~1. ....n(x"+I- x;.,) (X, Let,\1 I, /\~ 1\"+1 be real numbers such that
'L;'+II '\,cf>(x i ) =c O. Then

for each I' in {t, .... n I:.

( -I )'1,\, (II cf> Il/y(cx»'-t (*l
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Proof We proceed by induction on r. If r = I, the result is trivial. Let
r E {I, ... , n}, suppose that (*) obtains, and construct ljJ = L:~I a;cP; in H so
that

ljJ(Xi) = I
=0

if i = r,
if iE{I, ... , n + I}, i oF r and ioFr+ l.

Applying Remark 2.2 and [2, Chap. 2, 3.3] to the sets [xr , Xr+l]' {Xi}
(i E {I, ... , n + I}, i oF r, i oF r + I), we see that

inf{ ljJ(x): Xr :C X :C Xr+1} ;?: y(a:) II a 112 > o.

On the other hand,
n+1

ItrljJ(xr) + ltr+!ljJ(xr+I) = I ltiljJ(Xi)
i=l

n n+l

= I a; I lticP;(Xi)
;=1 i=l

= 0,

whence (-I)'ItHI = (- l)r-lltrljJ(xr)/ljJ(xr+!)' Recalling that 1 ljJ(X) I :C II a 112 x
I! cP II for each x in [0, I], we now obtain

(- Iyltr+! ;?: (y(a:)/II cP fI)'-ly(a:) II a 112/11 a 11211 cP II = (y(a:)/II cP II)'

and

(- IYItr+! :C (II cP II/y(a:)r-lll a 11211 cP II/y(a:) II a 112 = (II cP II/y(a:))'. I

4.2 LEMMA. Let °< a: :s:; n-l, and let XI' ...' Xn+l be points of [0, I] with
mink~L ....n(xk+l - xk) ;?: ex. Let 10 > 0, V1 E H, and suppose that mink~l. ....n+l

(- I)kljJ(xk) ;?: -E. Then

/ljJ(Xk)/ :C 10 C~: (I: cP l'y(a:Wti-1 - I)
for each k in {I, ... , n + I}.

\ \ n+lProof Compute real numbers "I = I, "2 , ... , Itn +1 so that Lid lticP(Xi) =
o. Noting Lemma 4.1, we have, for each k in {I, ... , n -+ I},

n+l

= - I ltiljJ(Xi )

i=l.io/=k

= It k z{1(Xk)

= (--I )k-l Iltk I z{1(Xk)

:C 10 Ilt k I·
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[t follows from this and Lemma 4.1 that

(

1HI )

~cc Emax I,,~ (( <Pi y(a:»1tIH.~ I

4.3 LEMMA. Let °< ex ~ n-I . Let XI,"" X" be points of [0, 1] such that,
in the case n;?: 2, mink=l.... ,n--l(X"'+l- x k ) ;?: Ct. Let E > 0, t/J E H, and
suppose that maxH ... "n I t/J(X",) \ C;; E. Then Ii t/J I! ~ nY(Ci)-I\1 <P liE.

Proof Applying Lemma 2.1 to the sets {Xi} (i ,= 1, ... , n), we obtain

Hence II if; II ~ If a 11211 <P II ~ ny(cx)~l II <P liE. I
We are now in a position to establish the computability of best Chebyshev

approximants. Before doing so, however, we mention the following result
from [4].

4.4 THEOREM. Let F be a finite dimensional linear subspace of the normed
space.E over IR, and g an element of E with the property: max(11 g -- x ii,
II g - x' I!) > dist(g, F) whenever x, x' are distinct elements ofF. Then ghas a
unique best approximant in F.

4.5 THEOREM. a has a best approximant b in H that is unique, in the sense
that 1\ a ~ p II > 11 a - b 11= dist(a, H) whenever p E H and II p - b Ii > 0.

Proof In view of Theorem 4.4, it will suffice to prove that max('11 a - p
1\ a ~ q II) > dist(a, H) whenever p, q belong to H and II p - q Ii> 0. Given
such p and q, as II a - p \1+ 1\ a - q II :3 II p - q 1\ > 0, we lose no generality
in assuming that II a - q II > 0. With 8 a modulus of continuity for a - q on
[0, I}, we choose ex so that °< ex < min(n--l, 2-18(11 a-- q II», and define

n+l

C = L (II <P II!Y(Ci»n+i-l - l.
i=l



CONSTRUCTIVE APPROXIMATION THEORY II3

We then choose € so that °< € < 2-1min(c-l II p - q II, II a - q II). Either
II a - q II > dist(a, H); or, as we may suppose, there exists an €-alternant
(j, (Xl"'" Xn+I» of a and q (Proposition 3.3). As mink~l. .... n+I( -l)k-i
(p - q)(Xk) > -2€ entails lip - q II ~ C(2E) < II p - q II (Lemma 4.2), we
can find k with (-I)k-j( p - q)(Xk) < -E. For this k, we then have

II a - p II ~ (-I)H(a - P)(Xk)

= (- I)k-i(a - q)(Xk) + (- I)k-i(q - P)(Xk)

> II a - q II - 10 -1- €

= lia - qjj.

Hence Ii a - p II > dist(a, H). I

When dist(a, H) > 0, the uniqueness property of the best approximant
can be strengthened (cf. [6, p. 80]).

4.6 STRONG UNICITY THEOREM. Let b be the best Chebyshev approximant
of a in H, and suppose that II a - b II > 0. Let S be a modulus of continuity
[or a - b on [0, I], n: = min(n-t, 0(11 a - b II) and c = n-2(y(n:)/1I c/J 11)211+1.
Then

II a - p II ~ II a - b II + ell p - b II

for each p in H.

Proof Let °< 10 < t II a - b II, construct an E-alternant (j, (Xl'"'' Xn+I»

of a and b, and note that

) n+l
Compute real numbers Al = I, A2 , ... , I\n+1 so that Lid ,\c/J(Xi) = O. We
first prove

4.6. I. Let lj; = L:l ad)i , where II a 112 = I. Then

We may assume that f3(n:) < I det [tPk(Xi)]!' Suppose that
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Then, choosing r in {I, ... , n + I} so that I If;(Xr ) I > n-1y(ex) (Lemma 2. I),
we have (- I)r,-Hlf;(xr) :'( 0: for, if (-I)'+Hlf;(xr) > 0, we would have
(Lemma 4.1)

(y(ex)/II cP II)n( -I)" Hlf;(xr) oS: (-I )r-l,\A -I)'-t-Hlf;(xr)

~- (~I)jArlf;(xr)

< n-2y(ex)(y(ex)/11 cP IOn,

from which would follow the contradiction °< (- I)r t-Hlf;(xr) < n-2y(CY).
We now have

n+1°= (- I)j I Aklf;(Xk)
k~l

n+l

< I n-2y(ex)(y(ex)il l cP II)n + (-l)r-l AA-IytH If;(xr )

k~l.k*r

= n-1y(ex)(y(ex) \1 cP I!)n - (~I y-1 Ar Ilf;(xr)!

< n-1y(ex)(y(ex}ill cP II)n - (y(ex)11 cP IDr-l n-1y(ex)

:(: 0.

It follows that, in fact,

n-2y(ex)(y(ex)/II cP II)n

:'( maX"~l. ....n+l( - l)jA"lf;(x,,)

= max (- l)k-1,\ (-I)Ie+j-l,/·(x ).
"~l. ....n-t-! Ie '/' Ie,

whence (Lemma 4. I) max,,~l. ... .n+l( -- I)",j-1lf;(x,,) > 0, and therefore

n-2y(ex)(y(ex)/ il cP II)n

:'( (II cP II/y(exW max"~l. ....n+l( -1)k+Hlf;(x,,).

Thus

and the proof of part 4.6. I is complete.
To complete that of Theorem 4.6, let p E H and note that either °< lip - b Ii

or lip - b II < E.ln theformer case, choose in turn a E IRn and k E {I, ... , n + I}
so that p - b = 2:;=1 OjrPj and
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II a - p II ~ (-I)lc+i(a - p)(Xk)

= (-I )k+i(a - b)(Xk) + (-I )k~H(p -- b)(Xk)

> II a - b II - E + II a 112(n-2Y(cY)(Y(cY)/11 r/J 11)2n -II r/J II lip -- b II-IE)

~ II a - bll- E

-+- Ii r/J II-II! p - b II(n-2y(cY)(y(cY)/11 r/J 11)2n - II r/J I11I p - b II-IE)

= II a - b II + ell p - b II - 2E.

In the case II p - b II < E, choosing q in H with II p - q II < minCE, C--IE) and
II q - b II > 0, we have

II a - p II > II a - q II - E

~ I' a - b II + c II q -- b II - 3E

~ Ii a - b II + c II p - b II - c II p - q II - 3E

~ II a - b Ii + ell P -- b II - 4E.

Thus, in both cases, II a - p II ~ II a - b II -+- c II P - b II - 4E. As EE

(0, ! II a - b II) is arbitrary, the required result now follows. I
Under the conditions of Theorem 4.6, we can argue as in the classical

proof of [6, p. 82, Theorem] to show that the best approximation process
is locally Lipschitzian: to be exact, we have

II b' - b II ~ 2n2(11 r/J II/Y(cY))2n+l II a' - a II

whenever a' E qo, I] and b' is the best approximant of a' in H. This estimate
can be sharpened in the following manner.

Let 0 < E < ! II a - b II, and construct an E-alternant (j, (Xl"'" Xn+l)) of
a and b. For each k in {I,00" n + I} we have (-I)k-i(b' - b)(Xk) >
-211 a' - a 11- E (cf. proof of [3,6.3]). As

it follows from Lemmas 4.2 and 4.3 that

I: b' - b II ~ nK (~: Kn +i
-

l - 1) (2 II a' - a I -+- E),

where K = II r/J Il/y(cY). As EE (0, II a - b 11/2) is arbitrary, this yields the
estimate

(

n+l )
II b' - b II ~ 2nK i~ Kn +i

-
l - I II a' - a II.
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To show that this is a sharper estimate than our earlier one, we need only
prove that L~:ll K n +i - 1 - I < nK2n for each positive integer n. This is a
simple exercise in induction.

5. CHEBYSHEV ApPROXIMATION OVER FINITE SETS

We now consider the case where X {Xl •...• Xn+l}, (Xl •... ' Xn+l ) being
a strictly increasing sequence of n+ I poi nts of IR. In this case, the classical
theory [10, p. 65] tells us that there is a unique best approximant b of a in
H, characterised by the property: there exists j E {O, I} such that (-I)"-i
(a - b)(Xk) = dist(a, H) for each k in {I, ... , n -+ I}. With b = L~~.l biepi
and bn+l = (-I )idist(a, H), this property can be rewritten

n

L biepi(Xk) + (-I Ybn+l = a(xk)
i ~-" 1

(k I ,... , 11 I). (*)

This gives us 11 + I linear equations in bl ,... , bn +l , and suggests the following
constructive approach: solve Eqs. (*) for bl ,... , bn +l • and then show that
II a - L~~l biepi Ilx = I bn+l I = dist(a, H).

The first of these instructions is easily carried out: it is a straightforward
exercise in linear algebra to show that, in view of the Haar condition, Eqs. (*)
have a unique solution for the bi . On the other hand, we have

5.1 THEOREM. Let Xc= {Xl'"'' Xn+l}, where (Xl'"'' Xn+ l) is a strictly
increasing sequence of n I points of IR. Let (b l , ... , bn+l) be the unique
solution of the equations

n

L biepi(Xk) 1 (-I)k bn+1

i ,-1

(k = I, ... , n + I).

Then b ~~ L~d biepi is a best approximant of a in H with respect to II Ilx , and
dist(a, H) === 11 a - b Ilx ~~ I bn +l I. Moreover, II a - p Ilx a - b Ilx when
ever p E H and Ii p - b Ilx > O.

Proof It should be clear that, given p in H with II p -- b Ix > 0, we need
only prove that II a - p lix > I bn+l i. We first do so under the extra assump
tion that i bn~l I > O. Arguing as in Lemma 4.2, we can find c :> 0 so that

whenever if; E H, E > 0 and mink~l..... n+l( -1)kif;(Xk) -E. Choose ex so that
O<o:<clilp-bllx , and jE{O,1} with Ibn+l! (-I)ibn+ l . As
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mink~I .... ,n+l(-I)k-i(p - b)(Xk) > -cxentailsllp - bllx :(: cex < lip - bl/x,
we can find k with (-I )k-i( P - b)(x,,) < O. For this same k, we obtain

II a - p Ilx ;? (-I)k-i(a - P)(Xk)

(-l)"-i(a - b)(Xk) + (-l)k-i(b - P)(Xk)

> I bn+I I,

as we required.
I n the general case, we can assume that (p - b)(xr ) > 0 for some r in

{I,oo., n + I}. Then either

or l(a - p)(xr)1 > (a - p)(xr). In the former case, the first part of the proof
immediately yields II a - p Ilx > I bn+I I. In the other case, we have 0 <
-(a - p)(xr); whence either 0 < (a - b)(xr), when we again have our result
from the first part of the proof; or

and therefore

I bn+l I cc= I(a - b)(xr)I < I(a - p)(Xr)I :(: II a - p Ilx· I

The argument of Theorem 4.5 now yields

5.2 THEOREM. Let X ~~ {XI"'" Xn+I}, where (XI ,00', x n+ I) is a strictly
increasing sequence of n + I points of IR. A necessary and sufficient condition

that bE H be the best approximant of a in H with respect to II I'x is that, for

each E > 0, there exists} in {O, I} such that

(-I)k-i(a - b)(xk) > II a - b Ilx - E

Note that the classical proposition,

(k = 1'00" n + I). I

if b is the best approximant of a in H then there exists} in {O, I} such that
(-I)H(a - b)(xk ) = II a - b I'x for k~= 1'00" n -~ I,

is essentially nonconstructive. To see this, let X E IR and take X == {O, I},
n I, ¢I = I, aCt) = tx (t = 0, I). Let b be the best approximant of a in
H = IR¢I' and suppose that)there exists} in {O, I} such that

(-l)i+l(a(O) - b) = (- I)H(a(I) - b) == II a - b 'Ix.
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Thenj = °entails x ~ b ~ 0, while j ~= I entails°~ b ~ x. Thus the above
classical proposition entails

"Ix E IR (x ° or x 0),

a statement known to be essentially nonconstructive [I, p. 26].
We conclude our paper with a link between the preceding results of this

section and the case X C~ [0, I]. to which we now return. Keeping an eye on
the corresponding classical situation, we might expect that a practical method
of computing the best approximant b of a in H will involve best approxima
tions to a over suitably chosen sets of n I distinct points of [0, I]. Among
such subsets of [0, I], there are certain ones whose importance for our earlier
characterisation and existence theory makes them obvious candidates for our
attention: namely, sets of the form {Xl ,. "'n,d where. for some j in {O, I}
and E > 0, (j,(x1 , ... , Xn+l» is an E-alternant of a and b. Our final theorem
gives a measure of how far these sets live up to our expectations.

5.3 THEOREM. Let X =, [0, I], P E Hand E 0. Suppose that there
exists an E-alternant (j, (Xl'"'' x nn» ofa and p, and let p be the best approxi
mant of a in H with respect to the sup norm over {Xl'"'' x nr1 }. Then

maxk~J. ....n'll(p ~ P)(Xk) I "::: nE.

Proof Let k E{l, ... , n} and suppose that

(-1 )k-j«p - p)(xk) +- (p -- P)(Xk+l» > E.

Then

(-I)k'H(a - p)(Xk+1)

= (-I)/,;H(a - P)(XH) I- (~I)kIH(p - P)(Xk+l)

> Ii a - P Ii - EI- E~ (-I)H(p - P)(Xk)

? (-IY-j(a - p)(xk) +- (-I)H(p - P)(Xk)

== (-I)H(a - p)(xk ).

This is impossible, in view of Theorem 5.1. Thus

(-I)H«p - p)(xk ) -~ (p- P)(Xk + 1» E.

A similar argument shows that

(5.3.1)

(5.3.2)(- I)H«p - P)(Xk) +- (p - P)(Xk+l» ? -Eo

Now suppose that

mink~l..... n+l( - I)H(p - P)(Xk) > 0.

Then [2, Chap. 2, 3.3] ensures that we can construct compact sets K r C
(xr , Xr+l) with inf{l(p - p)(X) I: X E K r} == ° for each r in {I, ... , n}. This
contradicts Lemma 2.1; whence minr~l. .... n+l( -I y-j(p - p)(x r ) ~ O. Given
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(I: > 0, we now choose r in {I, ... , n+ I} with (-I)H(p - p)(xr) < lX.

Using (5.3.1) and (5.3.2), we easily show that, for each s with r + s in
{I, ... , n -f- I}, (-I),+H(p - p)(xr+s) I s IE + lX. As lX > 0 is arbitrary, it
follows that (-I )H( P - p)(x,) :s;; nE for i = I, ... , nf- I. On the other hand,
ifnow k E{I, ... , n ---IJ and (-I),H(p -- p)(xk ) < -E, then

(-IY-i(a - P)(x,,)

= (-IY-i(a - p)(x,,) - (-IY--i(p -- P)(x,J

> I~ a - p !I - E ---;-- E

~ la -pi,·

This contradicts Theorem 5.1. Thus (-I)H(p - P)(Xk) ?" -E, and so
I(p - P)(Xk) I :s;; nE. I

Under the conditions of Theorem 5.3, if also 0 < E < ~ II a - p and 0 is a
modulus of continuity for a - p on [0, I], then mink~I..... r.(XIc-i-1 - x k) ?;o

o(i! a - P Ii); so that, by Lemma 4.3,

II p - P :s;; n2y(o(l! a - p 11»-1 II ¢ LE.

In particular, if p = b is the best approximant of a in H, then p --->- bas E --->- o.
This suggests that, in order to get a practical algorithm for computing b, we
look for an efficient method of constructing E-alternants of 0 and b (without
prior knowledge of b). In order to estimate the rate of convergence ofp to b
we would then need to be able to compute a priori a modulus of uniform
continuity for a - bon [0, I]. We are grateful to the referee for pointing out
the following method of finding such a modulus of continuity.

We know that b is of the form 2::1 b'cPi with b = (b l , ... , bn) EIRn. In
view of the Cauchy-Schwarz inequality

, b(x) - b( y)~ cC;: II b li2 I~ ¢(x) - ¢( y)12 (x, Y E [0, J J),

we see that a modulus of continuity for b can be obtained once we have found
a bound for II b 112 independent of b. To do this, let Xi = i!n (i~c I, ... , n) and
Ll = det[cP;(x,)]. Noting that ~'a - b II = dist(a, H) :s;; Ii a we see from
Lemma 2.1 that

lib !'2 :s;; ILl I-I n3!2(n - I)! ( D(11-- II cPr I)) bl

:s;; I LlI-I n3
/
2(n - I)! (n (I +1 cPr !I») (I a - hi + I 0,)

n

:s;; 21i a II ILl [-ln3!2(n - I)! n (I + Ii cPr I:)·
T=l

This gives us the required bound for il b 112 .
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Of course, there is a well-tried practical method for computing best
Chebyshev approximants: the Remes algorithm. We intend to discuss that
algorithm in another paper [5].
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