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I. INTRODUCTION

Let X be a compact subset of the real line R, C(X) the real algebra of
continuous mappings of X into R, and || |y the sup norm on C(X). We shall
discuss the characterisation, existence and uniqueness of best approximations
to elements of C(X) by linear combinations of functions which form a
Chebyshev system. (In most of our work, X will be either an interval or a
finite set; but we shall not make any restriction on the compact set X" until
Section 2, below.)

The classical treatment of these problems is well known and extensively
documented (cf. [6-10]). What is distinctive about our discussion is that we
work entirely within the framework of constructive mathematics (as
developed in [, 2]). We do so for reasons that we have stated elsewhere
[2, 3], and shall not repeat at length here; suftice it to say that a constructive
analysis of the sort we shall carry out provides numerical estimates which
cannot be obtained by the “existential” techniques of classical mathematics.
(Incidentally, this remark is not intended to denigrate classical mathematics:
at all stages of our investigation, the classical theory played an indispensable
role of guidance and motivation.)

Let n be a positive integer and ¢, ,..., ¢, elements of C(X). We say that
{1 ...., d,} is a Chebyshev system (over X) if the following condition of Haar
is satisfied:

if K, ..... K, are pairwise disjoint compact subsets of X, then

inf{} det[¢,(x)]|: Vi(x, € K;)} > 0.

(Note that, for constructive purposes, K, , K; are disjoint if inf{] x; — x; |:
x;€K;,x;€ K} >0.)

For example, {I, x,..., x*1} is a Chebyshev system over any compact
interval in R; and {l, cos x, sin x, cos 2x, sin 2x,..., cos nx, sin nx; is a
Chebyshev system over any compact subinterval of [0, 27).
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Mote that, if {¢,,..., ¢, is a Chebyshev system over A, x.... N, are
distinct points of X and &, ...., £, are real numbers, then there exists a unique
linear combination s of ¢, ,..., ¢, such that H(x,) - &, for k 1. n. It

follows from this that the functions ¢, ,..., ¢, are linearly independent.

The reader will have observed that our constructive Haar condition is
more complicated than its classical counterpart (to which it is equivalent
classically). The reason for this is that there is no known constructive proof
that a continuous mapping of a compact metric space into the posiiive real
line has a positive lower bound. This state of affairs has a considerable
effect on some of our later work. indeed, while we do not expect that the
classical theorem in question will prove to be essentially nonconstructive
[2. Chap. I, Section 5], the complicated analysis required to show that u
obtains in special cases of interest leads us to believe that a constructive proof
of the theorem is unlikely to be found.

To reinforce these remarks, we end this section of our paper with a proposi-
tion of great importance for our subsequent analysis.

[.1. ProPOSITION. Let n 2= 2, 6 0, and suppose that there exist n points
& v &y of X owith ming 5, | & — &| = 8. A necessary and sufficient
condition that the elements ¢, ..., ¢, of C(X) form a Chebyshev system is
that: for cach « in (0, 3], there exists 3 =0 such that ' det[¢;(x)]| = p
whenever xy ... X, belong to X and ming_; ;.01 x; - X, 7w

Proof.  Suppose that ¢, ..., ¢, form a Chebyshev system, and let 0 <
6. Let {{ ..., {,} be an «/8-net of X, and construct sets A4, B so that

(j! k) ed ! éj " CL“ o o“/2’
{

(,kyeB = —§ <34
Let
S = {ie{l,.., vim ¥ <k ((i()), i(k)) € A)}.
Let x,.., X, be points of X such that min, ., i ¥ — i > « and

choose 7 in {1,..., v}* so that | x; — (' << /8 for j=1,.... n. Then for
j <<k we have

L —Lwl Elxy—xe — 15— Lol — 1 G
> 3u/d;

so that (i()), i(k)) ¢ B, and therefore (i(j), i(k))e A. Thus ieS, and S is
nonempty. For each s in S, choose B(s) =~ 0 so that |det[$,(£)]1 == B(s)
whenever | &, — (ol < of8 for k == 1,..., n. (To do this, first choose r in
(/8. «/4) so that the closed ball B({; , r) of centre {,; and radius r is
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compact for each j. As : { iy — Lol > «/2 for j +# k, the balls B({,¢ » )
are pairwise disjoint, and the Haar condition can be applied to them to
produce the number B(s).) With B = min{S(s): s€S}, we now have
I det[¢x)]l = B(i) = B. This completes the proof of necessity of the condi-
tion stated in our proposition; the proof of sufficiency is routine, and will be
omitted. |

By evaluating the appropriate Vandermonde determinant, it is easy to show
that, for the Chebyshev system {1, x,..., x®1} over a compact interval, we
can take p == o"0-1/% I the above proposition.

2. BAsic PROPERTIES OF CHEBYSHEV SYSTEMS OVER [0, 1]

For the rest of this paper, # will be a fixed positive integer, {¢, ,..., ¢}
a Chebyshev system over X, H the n-dimensional real linear subspace of
C(X) spanned by {¢ ,..., $,}, and a an clement of C(X). We want to compute
and characterise a best (Chebyshev) approximant of a in H: that is, an element
b of H such that

la — blly = dist(a, H) = inf{{ a — i ||y: e H}.

Note that dist(a, H) is computable, by [3, 2.1].
It will be helpful to introduce some notational shorthand at this point.
Given a = (ay ,..., a,,) in B™, we write |al, for (Z]-”il a;)1% We also write

$(Y) == ($y(X),.o ulx))  (x€X)

and
| &l = supf{]! #(x)ls: x € X}

(the latter being computable, by [2, Chap. 2, 4.4]). If n > 2 and o, B are
as in 1.1, we write B(a) for B; if n =1 and « >0, we write B(x) for
inf{] ¢,(x)i: x € X}, in either case, we then define

Y = min(| ¢, B n — DT =1 i)

(The notations B(«), v(«) represent convenient, but dispensable, applications
of the Axiom of Choice.)

By far the most interesting Chebyshev approximation problems occur
when X is a compact interval in R (cf. [3, Sections 4-6]). To deal with this
case, we shall assume from here until Section 5, below, that X == [0, 1],
and we shall write || || for || [[p.17 - Note that, if (xy ,..., x,.4) Is a strictly in-
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creasing sequence of n + 1 points of [0, 1] and A, ,..., A, are real numbers
with 7511 A, | = 1, then (by the Cauchy-Schwarz inequality in R?)

ni1 Lomil

2 Aipi(x) ]} <) a‘yzi‘ Z Aup(x;) uo

n
2 4
j=1

[N
ai, Z LA 1 (X))o
i1
11-:1
Al Yy IA e
il
oiag, ¢l

Our first task, carried out in parts 2.1-2.4, is to obtain some basic numerical
and interpolatory properties of our Chebyshev system.

2.1. LEMMA. Let Ky ,..., K,, be pairwise disjoint compact subsets of [0, 1],
§ = inf{| det[$;(x)]: Vi(x; € K))}, and s = 3, a;; . Then

.....

Proof. With
o= 8{mdn - 1H! ]n—[ (-1 o,
r=1
M =  max infi] f(x): xve K.
suppose that M <l ally. For each ie{l..., nt, choose x; in K; so that

[(x)| << plaly. Let @,, be the cofactor of ¢(x,) in the n-by-n matrix
[¢,(x,)], 4 = det[$,(x,)), and note that

Dy l<— DU [ bl <@ (O i)
T=1,7r%} r=1]

Using Cramer’s rule, we obtain

i

| A Y g e,
i=1

=1

i n

<31y pial— DT+ ¢

i1

= Al it e



CONSTRUCTIVE APPROXIMATION TIL:EORY 103

This leads to the contradiction

[ n 2 o 1/2
ially = ( > aﬁ)1 < ( pI a\lzz/n) =laly.

j=1 j=i1

Thus, in fact, M = ullally. |

2.2. Remark. In the notation of Lemma 2.1, suppose that n > 2 and
that, for each ie{2,..., n}, there exists x; in K; with (x;) = 0. Then, for
each x; in K; and each j in {1,..., n} we have a; = 4-Y(x,) ¢y; ; whence

LAl AR Y B
j=1

< SO alin— DT+ 1)

This gives

n

inf{ gl x e Ky} = Sl aly/n'2n — D] (1 -+ 1 4,1,

7= 1

a strengthening of the estimate in Lemma 2.1.

For each of the next three results, the reader is invited to provide himself
with the modifications of their classical proofs which will yield constructive
ones.

2.3. LemMA. Let n 2= 2, e H, ||| == 0, and suppose that + has zeroes
at n — 1 distinct points of [0, 1]. Then y(x) changes sign at each zero of 4 in
(0, 1).

2.4, LEMMA. Let n = 3, and let xq ..., Xy_y be n — 2 distinet points of
(0, 1). Then there exists  in H such that

(a) for each iin{l,..,n — 2}, 4i(x,) = 0 and J{x) changes sign at x; .

(b) for each compact K C [0, 1] which is disjoint from{x;: [ = 1,...,n-2).
inf{l (x)}: xe K} > 0.

2.5. CARATHEODORY’S LEMMA. Let m, v be positive integers withm > v -+ 1,
A C R and x a convex linear combination of m elements of A. Then, for each
€ = 0, there exists a convex linear combination 'y of m — 1 elements of A such
that ' x —yl| < e[6, p. 17].
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We next remark that, ¢: [0, I] -~ R” being uniformly continuous,
{o(x): x [0, 1]} is totally bounded, as its convex hull. In particular, this
ensures that

dist(0, co{p(x): x [0, 1)
= inf{l E 1, Eecolelx): xe [0, 11}

is computable. In order to construct a nonvanishing element of H, we show
that this distance is positive.
2.6. Lemma.  dist(0, co{e(x): xe [0, []}) - 0.

Proof. The proof is in several stages.

26.1. Let 0 < «x <<t and let xy ... X, 1 be points of [0, 1] such that
ming_q . (X — Xp) 22 . Let py..., pn., be nonnegative numbers with

S pe= L Then | S pi(x)ls  nly(=).
Let refl,..., n), and construct s ) | a;¢; in H so that

Plx) =1 it i o

=0 it ire{l,.,n- Ui #r and [r oy L.

Applying 2.2 to the disjoint compact sets [x,, x,4], {xF (fe{l... no- 1y,
I #4r, i+ r-=1), we have

inf{| f(x0): x e [x,, v,y =y jfal, =0
As J{x,) = 0, [2, Chap. 2, 3.3] ensures that i(x,.;) = »(«) | a i, ; whence

(Pr T Pr+1) V(O‘) :: a [2 = P:l/‘(xr) i Prr:»ll/’(xr‘l)

n

: Z pab(x;)

[
n+1

- Z a; Z pipi(x:)
=1 =1

R

= la 3\2‘\ Y. pid(x;) \‘. .
i1 il

Thus

LNl
|

0 < (ps+ pran) 7)< | X pid(rd | (o L)

"
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and so

n+l \

S ( X 2p, — (py - Pn~1)) (o)

vi=1 .

= Y Ao+ opi) ()

=1

- onel

< nlY pig(x,) ]‘ :
AR 2

Division by n# completes the proof of 2.6.1.

2.6.2.
infl| () x € [0, 11} >0,

Given xin [0, 1], compute x; ,..., X, in [0, 1]and rin {l,..., n 4 1} so that
x, -x and ming_y, .(Xp; — X)) = [/4n. Then, with p, -1, p; =0 for
{ # r, part 2.6.1 entails

741

(6@l = | Y piste) | = ydm 0.
(28 r2

2.6.3. For each m in {l,..,n =+ 1}, there exists ¢, >0 such that:
m . . m
0 Sy pid(x)ily == ¢, whenever py ..., p,, are nonnegative numbers, Y ; i p; =
| and x, ... x,, are distinct points of [0, 1].

The case m -+ 1 is just case 2.6.2. Let k €{1,..., n}, suppose we have proved
2.6.3 for m = k, and consider the case m = k + 1. Let 8 be a modulus of
uniform continuity for the mapping F: (p, X) — |, Zf: p:®(x;)l, on the
compact subset

{ n--1
)

Joc R Zl i = 1, Vi(p; = 0)% < [0, 1]

of R*:! « R"+1 where the latter is taken with norm

e, )| == max,y, _,amax(] p; 1 | x; ).

Let
a = min(2-16(4 ¢), 1/2n(n 4 1)),

Copp = mln(% Cr s ”*l)’((x))-
Let py..... proq be nonnegative numbers with Z;‘:ll pi =1, 0<{x <

Xy << <CXpp <1 and g o=ming. . (x;; —x;). We have either
x < poru << 2w« In the former case, if kK <nwesetp; =0fori =4k 2,...,
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1 -+ 1, and choose Xy 5oy Xpoq 10 [0, 1]s0 that mingijcpni | X — ¥ |
This latter choice is possible as

max(x; , max;_y, i Xia — X | — Xppq)
=Mk +2) 2 1/(n+ 1) > na

By part 2.6.1, we have

R . RSt
ii Z pid(x;) Hz = HZIPzd’

Z i = ”"])’(04) = Cor -
2

In the case p << 2«, choosing r in {1,..., k} with x,.; — x, << 2a, we define

£ =Xy if IP{l, ,/\ Boi==r |1,
= X, it Q= b1,
pi = Pi it iedl ,A Vi#randi=r 1,

= Prob Praa if 1=
If k¥ <<n, we also set p;, ~ 0, § =x, = | for i=k 4+ 2,..,n -+~ I
each p; is nonnegative,

A+l UED |

Xopi rp=l
i1

i=1,i#r+1
and

n+1 k41

Z Pi¢(§i) e Z Pi¢’(«"z') “+ (Pr T Pr+1) d(x,)
i=1

Pe=l, @7, d#r H1

k+1

Y pib(x)

Feel, A
As also
e, B) — (0. X)| = x,q == X, < 20 = (% ),
we now have

m nel
} pidlx Y pidlx)
‘L 1
J} Z D) j\) — k¢

k-1

S PR

Die1,d2r41

This completes the proof of part 2.6.3.

Then
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With ¢, ., as in part 2.6.3, we now suppose that
dist(0, co{d(x): x € [0, 1]}) < cppy

and compute nonnegative numbers p,,..., p,,, and points xy,..., x, of
[0, 1], such that 37, p; = 1 and | S pid(x)ils << ¢u.y . Repeated applica-
tion of Lemma 2.5, if necessary, allows us to take m < n -- 1; from which it
easily follows that we can assume that m =n i I. As the mapping F
(introduced in the proof of part 2.6.3) is uniformly continuous over its domain,
we can find nonnegative numbers py ...., p,,.; and distinct points vy ,.... X,
of [0, 1] such that Y0} pi = 1and | 377 pld(x))ls < ¢, . This contradicts
2.6.3: whence, in fact,

dist(0, co{é(x): x [0, I]}) = oy - 0. |

2.7. PROPOSITION.  There exists s in H with inf{fi(x): xe [0, 1]} =0

Proof. Choosing ¢ with 0 < ¢ < dist(0, co{¢(x): x€[0, 1]}), we apply
the Separation Theorem [2, Chap. 3, 3.3] to the subsets {0}, co{é(x): x € [0, 1T}
of R”, to construct a normable linear functional « on R such that u(§) > lc¢
for each & in co{e¢(x): x € [0, 1]}. As u is normable, there exists a in R”? such
that u(x) Y, a;x; foreach x in R™, Withh = ¥ 1 a,¢, € H, we now have

B(x) = u(e(x)) = Le >0 (xe]0, 1],
whence inf{¥(x): xe [0, 1]} > 0. |

3. CHARACTERISATION OF BEST CHEBYSHEV APPROXIMANTS

Our next task is to extract the constructive essence from Borel's classical
characterisation of best Chebyshev approximants [10, Theorem 3-1]. In
order to accomplish this, we require some more definitions and lemmas.

The first of these definitions introduces a constructive substitute for the
classical notion of “alternant.”” Let p € H and € > 0. By an e-alternant of a
and p we mean an ordered pair comprising an integer j € {0, 1} and a strictly
increasing sequence (X ,..., X,.,) of # |- | points of [0, 1] such that

(— D ia — pXxp) > la—pll— e (k- 1,...,n 4 1)

Ifalso 0 < ¢ <<|la — pl|land m €{0,..., n — 1}, we define an (m, ¢)-prealter-
nant of a and p to be an ordered pair comprising an integer j € {0, 1} and a
strictly increasing sequence (xy ...., Xg,,..4) Of 2m — 4 points of [0, 1] such that
X1 0. Xoq =1,

(—D(a—p)xy) > 1a—pll— e
(‘ l)"”l-j(a ‘ p)(x2m—; 3) = “ a—p }\ — €,



108 DOUGLAS S. BRIDGES

(—D" a — p)(x,) ca -ploooe (koo 2k 12k 2k - )
and
supil{a — p)X) @ Xy BN e Xapuqy <D hd - p| (k R m o 1)

3.1, LEMMA. Let pe H, and suppose that O << e < a — pi. Then cither
fa—p' o dist{a, H) or there exists a (0, €)-prealternant of a and p.

Proof.  Let m, M be respectively the inf, sup of 4 — p over [0, 1]. Either
La - pif = min(-—-m, M) or min(--m, M) = ta - pll — ¢ In the former

case, we choose ~ so that
0<a<<2a--p ' —~ min(-—-m M)

and e A with 0 </ inf{{{(x): xe [0, 1]} and | ;! < | (Proposition 2.7). If
ta —pi = —m (when 'la - pi]l M), weset g = p - =i so that gc H
and, for each v in [0, 1],

(¢ — g)x) = 'a—pl — xinf
(g — a)(x) =< a(x) < sup{( p — a)}(§): £c [0, 1]}
L
< a-p—

ba = pi~ xinf

Hence
a—pi o sla-— g - ~inf - dist(a, H).
We obtain the same inequality in the case |a —~ p< ~- M by taking ¢ --
p — OC(/I.
On the other hand, if min(—m, M) - ila — p| — e, we argue as in the

corresponding part of the proof of [3, 4.1], to show that there exists a
(0, e)-prealternant of ¢ and p. [

3.2 LEMMA. Let m be an integer, O == m = n — 2, and p ¢ H. Suppose
that 0 < e <lla — p |, and that there exists an (m, €)-prealternant of a and p.
Then either ||a — p| > dist(a, H) or there exists an (m | 1. ¢)-prealternant
of a and p.

Proof. Let (J, (t; ...., tapq)) be an (m, €)-prealternant of « and p, and
define

Bo== MaAX g e SUPH— 1)@ — pUX): Loy = XS .
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Either @ — p| > porp > a — p | — e In the former case, choose « > 0
so that
max(p. maxe_y, . suplli@ — Pty X < dy))
< la—pl — 2,
let
e~ (ty F fapaa)i2 (k= T1..,m i D
and define
P | if n-— miseven,

—pn =2 if n— mis odd.

If m + 2 < r, also choose a strictly increasing sequence (z,,.s,..., z,)} of
r—m — 1 points of (z;, ;). Construct  in H so that (—1)(z) > 0,
0 <l | < min{a, || @ — pl/2), 4 has its zeroes, and changes sign, at each
of zy ...z, and

9

0 <o 2'inf : (X)) v E U_ [toiiy s fg,v]é.

il

(This construction is possible in view of 2.2, 2.3 and 2.4)) Let g = p - i),

suppose that \‘ a—qll >la—p|— o, and choose { in [0, 1] so that
a — (O > 1a—p|— o Then

a — p)O)| = @ — gl Dl — ((p — ¢)(D)

,“‘a*p\—G*‘J)’l
fa—pll =211
= la —pli— 2w

e SUPE (@ — PUX: toy 52 X < typaa).

It follows from this and the uniform continuity of @ — p on [0, 1] that there
exists 7 in {1,..., m + 2} with #5; ; <0 0 < 1y, .

Noting that thc zeroes of ¢ occur pr emsely at the points z, ,..., z,, and that
each interval [t , t,,.,] contains an odd number of these zeroes, we have

(~l)k_j+l¢(x) > O (X € [Z‘Zl.‘-—»l s er]’ /" = l*"'s m -+ 2)

Hence

(=1)(g — a) () = (=YL + (= 1)/(p — a)()
< —0c-+ la—pl.
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It follows from this and our choice of { that (—1)~i(a ~ ¢)}{) > |la-pi - o;
whence

(— D@ — pXO) = (=D a ~ gl — (= D)T)
mld =Pl - g
= fia — p 2x

2
This contradicts the definition of u; so that
Na—pi =lia ~q! o > dista, H).

On the other hand, ifp > |ja - p+ — ¢, we can argue as in the correspond-
ing part of the proof of [3, 4.2], to show that there exists an (m -+ 1, €)-
prealternant of g and p. |}

Our next two results, taken together, form a constructive analogue of Borel’s
characterisation theorem. We omit the proofs, as they differ in at most trivial
details from those of the corresponding theorems in the case of minimax
polynomial approximation [3, 4.3 and 4.4].

3.3 ProrosITION. Letpe Hand O < ¢ - a-p'. Then either i a - p
dist(a, H) or there exists an e-alternant of a and p.

3.4 THEOREM. A necessary and sufficient condition that b€ H be a best
Chebyshev approximant of a in H is that, for each ¢ -0, there exists an
e-alternant of a and b.

4. EXISTENCE AND UNIQUENESS OF BEST CHEBYSHEV APPROXIMANTS

Each of the three remaining steps on the path to the construction of best
Chebyshev approximants is a stronger, and much more informative, version
of a classical counterpart (cf. [8, 3.5.1; 9, Theorem 24]).

4.1 LEMMA. Let O < x =l w7, and let xy ..., x,, be points of [0, 1] with
ming_y  afXpq — Xu) = o Let Ap - 1 Ay, Anyy be real numbers such that

()l 1D = (= DA s (L@ () ("
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Proof. We proceed by induction on r. If r = 1, the result is trivial. Let
re{l,..., n}, suppose that (*) obtains, and construct s = ¥, a;¢; in H so
that

Hlx) =1 if i=r,
= 0 if ie{l,.,n+1Li+#r and I£r-+1.
Applying Remark 2.2 and [2, Chap. 2, 3.3] to the sets [x,, X,.], {x;}
(ief{l,.,n—+ 1}, i#r, i #4r+ 1), we see that
inf{s(x): x, < x < x40 = Yo)|lall, > 0.
On the other hand,

n+1

Aif(x,) + Ay b(x,yy) = Z As(x,)

n+1

= i a; Z Asi(xy)
=0,
whence (—1)Ars = (— 1) Ag(x)p(x,,). Recalling that | (x)] < |lall, x

|| ¢ || for each x in [0, 1], we now obtain
(=D = (Y@ 1 @)y aloflalsl ]l = ()] SN

and
(=D < @lfy(@) 2 alzli ¢y laly, = (¢ ll/y(a). |

4.2 LEMMA. Let 0 < o <<n™l, and let x, ,..., x,., be points of [0, 1] with

(—l)k‘/j(xk) > —e. Then
n+l
[l < ( Y (6 [yt - 1)

Sfor each k in {1,..., n + 1}.

Proof. Compute real numbers A, = 1, A, ,..., A, so that Z?:ll A(x,) =
0. Noting Lemma 4.1, we have, for each k in {1,..., n + 1},

—e(zw—mkx)< T A (=1 )
=1 i=1,i%k

= - z Aip(x;)

i=1,i%k
= Aph(xy)

= (=D A | h(xe)
< e }‘k I

640°30:2 3
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[t follows from this and Lemma 4.1 that

n+i1 X
| )| = emax(l, Y oI A ] - 1)
PR | J
Nt N
emax(1Y (6 p w60 - 1)
i1 K
n+l
= emax(l, Z (( b | 'y(oc))"”’l _w 1)
i1 /
n+1
= e(}j (L liplayret — 1). I
i1
4.3 LEMMA., Let 0 <o < n'. Let xy,..., x,, be points of [0, 1] such that,

in the case n =2, Mg,  , (xpg —x) >« Let € >0, JeH, and
suppose that maX,—,, . | ¥(xp)| < e Then ||| < ny(o) ™| & fle.

Proof. Applying Lemma 2.1 to the sets {x;} (i = 1,..., n), we obtain

€ 2 MaXeey,  q | P(x) = nly(a) fall,.

Hence ¢l <llalhlidfl <np() il dlie. |

We are now in a position to establish the computability of best Chebyshev
approximants. Before doing so, however, we mention the following resuit
from [4].

4.4 THEOREM. Let F be a finite dimensional linear subspace of the normed
space.E over R, and ¢ an element of E with the property: max()| £ — x1,
1€ — x'1) = dist{€, F) whenever x, x" are distinct elements of F. Then & has a
unigue best approximant in F,

4.5 THEOREM. a has a best approximant b in H that is unique, in the sense
that |a — p|| > ||a — b = dist(a, H) whenever p& H and\\p — b} > 0.

Proof. In view of Theorem 4.4, it will suffice to prove that max{jja — p 1,
fa — ql}) > dist(a, ) whenever p, q belong 1o H and || p — ¢ | > 0. Given
suchpand g,aslla — plii+lla—qll =llp— ql > 0, we lose no generality
in assuming that )| @ — g > 0. With & a modulus of continuity for a — ¢ on
[0, 1], we choose « so that 0 << o << min{n, 27'8()la — ¢ ))), and define

n+1

¢ = (¢l — 1.
imt



CONSTRUCTIVE APPROXIMATION THEORY 113

We then choose € so that 0 < e < 2-'min{c™'||p — ¢, I|@ — ¢l). Either
|la — g > dist(a, H); or, as we may suppose, there exists an e-alternant
(J, (X1 1., Xpuq)) of @ and g (Proposition 3.3). As min_;, (=17
(p — g)xi) > —2e entails | p — ql] < ¢2e) <|lp — gl (Lemma 4.2), we
can find k with (—1)*(p — g)(x,) < —e. For this k, we then have

la—pll = (=1)a — p)xi)
= (=) Ha — q)(xp) + (= 1)*(g — p)x))
>lla—q!|—e+ €
=la—gql
Hence |ja — p || > dist(a, H). |

When dist(a, H) > 0, the uniqueness property of the best approximant
can be strengthened (cf. [6, p. 80]).

4.6 STRONG UNICITY THEOREM. Let b be the best Chebyshev approximant
of a in H, and suppose that ||a — b|| > 0. Let 8 be a modulus of continuity
for a — b on [0, 1], « = min(n~, 8l a — b)) and c = n~*(y(x)] || ¢ >
Then

la—pll=zlla—bll+clp—2>l
Jfor each p in H.

Proof. Let0 < e << il a— bl,construct an e-alternant (j, (x; ,..., Xp41))
of a and b, and note that

ming_y, . o{Xisr — X) 22 8(lla — b)) > «

Compute real numbers A, = 1, A,,..., A,,; so that Z?: Ag(x,) = 0. We
first prove

4.6.1. Let y =Y, a;b;, where | al, = 1. Then
MaXeay, .. nsr(— D 4(x) = a2y (a)(p(a)] || & 1)
We may assume that S(«) < | det [¢(x;)]|. Suppose that

maxy,...,ne(— DAh(er) < n2p()(p()/ 1| & ).
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Then, choosing r in {l,..., n 4 1} so that | J(x,)| > rn~1y(o) (Lemma 2.1),
we have (—1)""-1f(x,) < 0: for, if (—1)"+Y(x,) > 0, we would have
(Lemma 4.1)

(@ 1 ¢ (=177 hlx,) < (=D A(= 1)1 (x,)
= (— l)jAr¢‘(xr)
< () 1 S )",

from which would follow the contradiction 0 <C (—1)"*~1(x,) < n=2p(a).
We now have

n+1

0= (=1 Y Ahlxy)
k=1

n+l
< Y m (@)@l e ) + (=D A= (X,
= ny()(y(0)il ¢ )" — (1)1 A, | lx)]
< n () (y(e)]l ¢ ()" — (y() 1 ¢ 1) n~ly(o)

< 0,
It follows that, in fact,

A 2y(a)(p()f || 6 1"
< maXgey, . s — 1P Ab(x)

.......

= maXyy,., (= DFIA(~ D 5(00);

whence (Lemma 4.1) max,_;. . . — D7 1(x,) > 0, and therefore

n=p()(y()/ 1 S ()"
\<\ (H ¢ H/V(OL))" maxlc:l ..... n+l(-‘l)k‘r]‘71¢’(xk)'

Thus
Maxe—y,. e~ D7 7(0x) = a7 2p(c)(p(a)] | ¢ )27,

and the proof of part 4.6.1 is complete.
To complete that of Theorem 4.6, let p € H and note that either 0 < || p - b ||
or||p — b|| < e.In the former case, choose in turnae R*and k € {1,...,n + 1}

sothatp — b = Y, a;¢; and

(=D Hali(p — b)xw) > n (@)l 1" — [ S1llp — blte
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Then

la—pll = (=D*a— p)x)
= (=D*a — b)(xy) + (=D p — b)(xx)
>lla =5l — e+ allny )y | 1" — I ¢llllp — ble)
=lla—bll—e
el e — bl(n*y( @)y 161D — ¢ lllp—bi™e)
=la—=0bll+clp—>bl—2e

In the case || p — b || < ¢, choosing g in H with || p — g < min(e, c¢™'¢) and
llg — b > 0, we have

fa—pl>la—qll—e
Zlla—bll+cllg—>|—3e
zla—>bll+cllp—>bll—cllp—gql — 3¢
Zlla—>bl+clp-—>bl—4e

Thus, in both cases, |la —p||=lla—b|+cllp—bll —4e. As €€
(0, $|la — b)) is arbitrary, the required result now follows. |

Under the conditions of Theorem 4.6, we can argue as in the classical
proof of [6, p. 82, Theorem] to show that the best approximation process
is locally Lipschitzian: to be exact, we have

16" — bl < 2n%(| ¢ ll[y())*"* | a — al

whenever a’ € C[0, 1] and b’ is the best approximant of a” in H. This estimate
can be sharpened in the following manner.

Let 0 << e << | a — bJ, and construct an e-alternant (j, (x, ,..., Xp4,)) of
a and b. For each k in {1,..,n + 1} we have (—1)*(b" — b)x,) >
—2]la — ai — e (cf. proof of [3, 6.3]). As

Ming_y . o(Xes — X)) = 6(la — b)) =
it follows from Lemmas 4.2 and 4.3 that
n+1
(& — bl < nK(Z gl 1)(2H a —al + e,

i=1

where « = || @|l/y(a). As €€(0,]la — b|/2) is arbitrary, this yields the
estimate

n+1
16 — bl < ZnK(Z KL — 1)1{ a — al.

=1
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To show that this is a sharper estimate than our earlier one, we need only

n+1 . o . . .
prove that >, | "+l — | < n«?" for each positive integer n. This is a
simple exercise in induction.

S. CHEBYSHEV APPROXIMATION OVER FINITE SETS

We now consider the case where X == {x; ..., X1}, (X ..., Xpyq) being
a strictly increasing sequence of n -- I points of R. In this case, the classical
theory [10, p. 65] tells us that there is a unique best approximant b of a in
H, characterised by the property: there exists je {0, 1} such that (—1)*~7
(a — b)(x;) = dist(a, H) for each k in {1,..,n + 1}. With b =3" b,
and b,_., = (—1)'dist(a, H), this property can be rewritten

Z bzqsz(xk) + (—])k bn+1 = a(x;) (k = 1,0+ 1) (*)
21

This gives us n 4- 1 linear equationsin b, ,..., b, , and suggests the following
constructive approach: solve Egs. (*) for b,,..., b,,;, and then show that
la— 2:;1 bidilly = | b,y | = dist(a, H).

The first of these instructions is easily carried out: it is a straightforward
exercise in linear algebra to show that, in view of the Haar condition, Egs. (*)
have a unique solution for the 4, . On the other hand, we have

5.1 THEOREM. Let X == {Xy,..., Xp1}» Where (xy ..., X,1) is a strictly
increasing sequence of n -+ 1 points of R. Let (by,..., b,,,) be the unique
solution of the equations

z biqsi(xk) + (“l)k bnq] o (I(X;‘.) (k = ],..., n 4+ 1)
=1

Then b — S | b;$; is a best approximant of a in H with respect to |||y , and
dist(a, H) =|ia — bllx = | byi1 |. Moreover, || a — pily > i a— blly when-
everpe Handlip — by > 0.

Proof. It should be clear that, given p in H with || p — by > 0, we need
only prove that || a — pliy > | b, |. We first do so under the extra assump-
tion that | b,., | > 0. Arguing as in Lemma 4.2, we can find ¢ > 0 so that

Wil == maXey, . ey | P(xp)] = ce

whenever € H, € > Oand min,_;,  ..{— D ¥(x,) > —e Choose « so that
O<a<c'|p—>bly, and je{0, 1} with b, | = (—=1Yb,.y. As
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ming_y, . aaa( =D (p — b)(xx) > —aentails || p — by < cx <llp — by,
we can find k& with (—1)*(p — b)(x;) < 0. For this same k, we obtain
la —pllx = (1)@ — p)xe)
= (=D e — b)(xp) + (= Db — pXxi)

> ’ bn+1 "

as we required.
In the general case, we can assume that (p — &)(x,) > O for some r in
{1,..., n + 1}. Then either

I(a — p)(xr)l < (a - b)(X,) - ! bn+1 I

or [(a — p)(x,)| > (a — p)(x,). In the former case, the first part of the proof
immediately yields ||@ — plly > | by |- In the other case, we have 0 <
—(a — p)(x,); whence either 0 < (@ — b)(x,), when we again have our result
from the first part of the proof; or

(a “ p)(xr) < (a - b)(xr) < '_'(a - p)(xr)’

and therefore

[ bpin | = @ — B)x)l <@ —p)x)l <lla—plx. 1

The argument of Theorem 4.5 now yields
5.2 THEOREM. Let X = {xy,..., Xpoy}, Where (Xxy,..., Xp.1) IS a strictly
increasing sequence of n + 1 points of R. A necessary and sufficient condition

that b € H be the best approximant of a in H with respect to || |'y is that, for
each € > 0, there exists j in {0, 1} such that

(=D a = b)(xy) >lla—bly—¢ (k=1.,n+1). [
Note that the classical proposition,

if b is the best approximant of a in H then there exists j in {0, 1} such that
(— D@ — b)x;) =1la — blyfork = 1,..,n-+1,

is essentially nonconstructive. To see this, let x € R and take X == {0, 1},
no=1, ¢ = 1, a(t) = 1x (t = 0, 1). Let b be the best approximant of a in
H = R¢, , and suppose thatthere exists j in {0, 1} such that

(—1)"a(0) — &) = (—1)"*(a(l) = B) =@ —bl.
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Then j = Oentails x = b = 0, while j = 1 entails 0 > & > x. Thus the above
classical proposition entails

VxeR (x =0 or x < 0),

a statement known to be essentially nonconstructive {1, p. 26].

We conclude our paper with a link between the preceding results of this
section and the case X = [0, 1], to which we now return. Keeping an eye on
the corresponding classical situation, we might expect that a practical method
of computing the best approximant b of a in ff will involve best approxima-
tions to a over suitably chosen sets of # - | distinct points of [0, 1]. Among
such subsets of [0, 1], there are certain ones whose importance for our earlier
characterisation and existence theory makes them obvious candidates for our
attention: namely, sets of the form {x,,..., x,,;} where, for some ; in {0, 1}
and € > 0, (j,(x;,..., Xpuq)) is an e-alternant of @ and 6. Our final theorem
gives a measure of how far these sets live up to our expectations.

5.3 THEOREM. Let X ==[0, 1], pe H and e > 0. Suppose that there
exists an e-alternant ( j, (X ,..., Xn.1)) 0f a and p, and let p be the best approxi-
mant of a in H with respect to the sup norm over {xy,.., X,.}. Then
Maxe_y, . pal(p — P)(xlc)‘ < ne.

Proof. Let k e{l...., n} and suppose that
(=1 (p = P + (p = PYxicn) = €
Then
(—DF1a — p)xpe)

= (=¥ a — p)xp.y) + (= DF(p — poxis)
>ha—pl—e+e—(=D"(p— p)xi)

> (=@ — p)x) + (=D (p — p)x)

= (—D*(a — p)xy).

This is impossible, in view of Theorem 5.1. Thus

(—=D(p — pXxi) + (p — Poxra)) << e (5.3.1)
A similar argument shows that
(=D (p — p)xx) + (p — PNxein)) = —e (5.32)

Now suppose that
min_y, . (= 1D*7(p — p)x) > 0.

Then [2, Chap. 2, 3.3] ensures that we can construct compact sets K, C
(x, x,41) with inf{l(p — p)(x)|: xe K} = 0 for each r in {l,.., n}. This
contradicts Lemma 2.1; whence min,_;, _,.,(—=1)""(p — p)(x,) < 0. Given
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a >0, we now choose r in {l,...,n+ 1} with (—=1)"7(p — p)(x,) < «.
Using (5.3.1) and (5.3.2), we easily show that, for each s with r 4 s in
{Los n A4 U (=157 p — pYoxrys) < |s|e+ o As a >0 is arbitrary, it
follows that (—1)*7(p — p)x;) < nefori = 1,..,n -+ 1. On the other hand,
if now ke{l,..,n - 1} and (=1)"7(p — p)x;) < —¢, then

(—=1)a — p)xy)
= (=1 a — p)x) -+ (= DM(p — p)xe)
>la—pll—ere
= la—pl
This contradicts Theorem 5.1. Thus (—1)*(p — p)(x;) = —e¢, and so
I(p ”—P)(xk)[ <ne |
Under the conditions of Theorem 5.3, ifalso 0 < e < }jl¢ —planddisa

modulus of continuity for @ — p on [0, 1], then min,_;  .(x:q — Xp) =
8(ila — p1); so that, by Lemma 4.3,

lp—pl < nyd(la—pIN7tléle

In particular, if p = b is the best approximant of ¢ in H, then p — base — 0.
This suggests that, in order to get a practical algorithm for computing b, we
look for an efficient method of constructing e-alternants of ¢ and & (without
prior knowledge of ). In order to estimate the rate of convergence of p to b
we would then need to be able to compute a priori a modulus of uniform
continuity for a — b on [0, 1]. We are grateful to the referee for pointing out
the following method of finding such a modulus of continuity.

We know that b is of the form Y., b;¢; with b = (b, ,..., b,) e R". In
view of the Cauchy-Schwarz inequality

Lb(x) — b(y) < bl |l é(x) — ¢( M), (x, pe0, 1],

we see that a modulus of continuity for b can be obtained once we have found
a bound for || b ||, independent of . To do this, let x, = i/n (i = 1,..., n) and
4 = det[¢(x,)]. Noting that [a — b = dist(a, H) << | a!, we see from
Lemma 2.1 that

by < A7 — 1)!(H (+1g.0) b
r=1 /

<A 3 — 1) ( Ma+ qs,w)) (a—bi+la)
r=1

<20 all A — D]+ 1)

This gives us the required bound for || b, .
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Of course, there is a well-tried practical method for computing best

Chebyshev approximants: the Remes algorithm. We intend to discuss that
algorithm in another paper [5].
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